

Heating Up: Options for Decarbonizing Industrial Process Heat

Wednesday, April 3rd, 2024 4:00 - 5:30 pm ET

Introduction to Industrial Thermal Loads and Decarbonization Technologies

What is Process Heat?

Process heat is the application of heat in industry to manufacture materials, goods, and products.

To Reach Net-Zero, We Must Decarbonize Industrial Process Heat

90% of process heat is generated from the unabated burning of fossil fuels

GHG emissions from U.S. manufacturing

One-third of energy consumed for process heating is ultimately lost as waste heat

Industrial Heat includes process heating, conventional boilers, and CHP/cogeneration. Manufacturing sector excludes agriculture, construction, or mining.

DOE AMO. 2021. Manufacturing Energy and Carbon Footprints. https://www.energy.gov/eere/amo/manufacturing-energy-and-carbon-footprints-2018-mecs

Process Heating Systems are Exceptionally Heterogeneous

Process Heating System Components

Different Categories of GHG Emissions from Industrial Thermal Processes

Examples: Fuel fired furnaces for metal/non-metal heating, metal melting, boilers, process heaters, etc.

Decarbonization Strategies: Reactive heating system (e.g., reduction, oxidation) using alternative reactive material or reaction paths (i.e., electrolysis) that do not produce GHGs. Energy efficiency can help decarbonize by reducing the effective thermal load. Carbon capture is an alternative pathway to decarbonizing these systems

Examples: Blast furnace, cupola furnace, sintering furnace, etc. using mixed carbon for reaction and heat generation.

Decarbonization Strategies: Heating system using low carbon fuels and/or electric heating powered by clean electricity can reduce combustion related GHGs. However, the product/process generated GHGs cannot be eliminated by this and will need a suitable carbon capture technology.

Examples: Clinker making kilns in cement industry, Lime kilns, reaction vessels, certain reformers, etc.)

Industrial Decarbonization Pillars

(Source: DOE's Decarbonization Roadmap)

Industrial Decarbonization Roadmap

DOE/EE-2635 September 2022

> United States Department of Energy Washington, DC 20585

Energy Efficiency	Industrial Electrification	Low-Carbon Fuels, Feedstocks, and Energy Sources (LCFFES)	Carbon Capture, Utilization, and Storage (CCUS)	
Energy efficiency advancements minimize industrial energy demand, directly reducing the GHG emissions associated with fossil fuel combustion.	Industrial process technologies that utilize electricity for energy, rather than combusting fossil fuels directly, enable the sector to leverage advancements in low-carbon electricity from both grid and onsite generation sources.	Substitution of low- and no-carbon fuels and feedstocks for fossil fuels can further reduce combustion-associated emissions for industrial processes.	This multi-component strategy for mitigating difficult-to-abate emissions involves capturing generated CO ₂ before it can enter the atmosphere; utilizing captured CO ₂ whenever possible; and storing captured CO ₂ long-term to avoid atmospheric release.	
 Energy efficiency technology examples: Energy management approaches Thermal integration of process heat Smart manufacturing Improved technologies and processes; system integration 	 Industrial electrification technology examples: Electrification of process heat (e.g., heat pumps) Electrification of hydrogen production for industrial process use 	LCFFES technology examples: Fuel-flexible processes Clean hydrogen fuels and feedstocks Biofuels and biofeedstocks Concentrating solar power Nuclear Geothermal	 <u>CCUS technology examples:</u> Post-combustion chemical absorption of CO₂ CO₂ pipelines and other CCUS-supportive infrastructure 	

Better Climate CHALLENGE U.S. DEPARTMENT OF ENERGY https://www.energy.gov/sites/default/files/2022-09/Industrial%20Decarbonization%20Roadmap.pdf

Lessons Learned from our Low-Emission Alternatives to Industrial Thermal Loads Working Group

Energy Efficiency Electrification		Low Carbon Fuel, Feedstocks, and Energy Source (LCFFES)	Carbon Capture, Utilization, and Storage (CCUS)	
 Discussed EE technologies to decarbonize industrial thermal loads. EE improvement of process heating systems by implementing: Operations-related opportunities Routine maintenance activities Retrofits (e.g., WHR) Use of new technologies (e.g., SM/IoT) 	 Reviewed common and advanced electrification strategies in industry (i.e., infrared curing, electric boilers, electric steam generators, etc.) Discussed Electrification Assessment Framework Establish inventory and energy use Assessing a facility's electrification readiness Identifying strategies for electrification Evaluating and implementing projects Discussed Available Tools: MEASUR, Thermal Processing Cost Comparison, Electrification Impact Calculator 	 LCFFES: Includes hydrogen, bioenergy, biofuels, bio-feedstocks, and renewable/clean sources of heat (solar, geothermal, and nuclear) Considerations by Energy Source: Hydrogen - Pure H2 combustion is not deployed commercially beyond pilot and demonstration projects; Biomass and Biofuel - Transport costs, process generation, cost competitiveness Renewable Heat - Spatial and temporal availability; Transport and infrastructure; temperature limitations with integration into large scale plants 	 The industrial sector is difficult to attain "Net-Zero" CO2 emissions due to hard-to-abate subsectors without the adoption of CCUS Point Source CCUS Technologies: Pre/Post Combustion (Uses Liquid Solvent) Oxyfuel Combustion (apture (Solvent-free) Calcium or Chemical Looping (Solid Adsorbent) Pre-Combustion Membrane Technology is not the primary challenge for CCUS deployment, rather current cost implications impede CCUS adoption of which government policy & regulation are needed. 	

INDUSTRIAL HEAT & THE INDUSTRIAL HEAT SHOT

Better Plants Summit

Heating Up: Options for Decarbonizing Industrial Process Heat

April 3, 2024

Joe Cresko, Chief Engineer

Industrial Efficiency and Decarbonization Office (IEDO)

KEY OPPORTUNITY FOR CROSS-SECTOR DECARBONIZATION

Process Heating

- Largest opportunity for cross-sector impact
- Accounts for >50% of manufacturing energy use, >90% of this energy is from fossil-fuels¹
- Technologies that reduce heating requirements and/or convert to clean heat are critical to decarbonization

Breakdown of Energy Use Onsite at Manufacturing Facilities, 2018¹

INDUSTRIAL HEAT DEMAND BY OPERATION

INDUSTRIAL HEAT DEMAND BY TEMPERATURE

Data sources: DOE <u>Manufacturing Energy and Carbon Footprints</u>, based on EIA Manufacturing Energy Consumption Survey (MECS) data for 2018; C. McMillan, <u>Manufacturing Thermal Energy Use in 2014</u>. 2019. National Renewable Energy Laboratory. dx.doi.org/10.7799/1570008; AMO Thermal Process Intensification Workshop Report

INDUSTRIAL HEAT DEMAND BY "OTHER" INDUSTRY

Data sources: DOE <u>Manufacturing Energy and Carbon Footprints</u>, based on EIA Manufacturing Energy Consumption Survey (MECS) data for 2018; C. McMillan, <u>Manufacturing Thermal Energy Use in 2014</u>. 2019. National Renewable Energy Laboratory. dx.doi.org/10.7799/1570008; AMO <u>Thermal Process Intensification Workshop Report</u>

INDUSTRIAL HEAT DEMAND BY CORE PROCESSES

Data sources: DOE <u>Manufacturing Energy and Carbon Footprints</u>, based on EIA Manufacturing Energy Consumption Survey (MECS) data for 2018; C. McMillan, <u>Manufacturing Thermal Energy Use in 2014</u>. 2019. National Renewable Energy Laboratory. dx.doi.org/10.7799/1570008; AMO <u>Thermal Process Intensification Workshop Report</u>

U.S. ENERGY-RELATED EMISSIONS:

~11% IS ATTRIBUTABLE TO INDUSTRIAL HEAT

2020 Energy-Related CO₂ Emissions by U.S. Economic Sector

2020 Estimated Industrial: Manufacturing Energy-Related CO₂ Emissions by Source

The Industrial Heat Shot is an All-Hands-on-Deck Effort to Lower the Emissions from Industrial Heat.

MANUFACTURING EMISSIONS FROM PROCESS HEATING

U.S. Manufacturing GHG Emissions (MMT CO₂e), 2018

Onsite combustion of fossil fuels provides > 95% of energy used for to power thermal systems in the manufacturing sector.

- Process heating emissions are the largest source of industrial emissions
- CHP/Cogen systems contribute to onsite emissions
- Process emissions arise from chemical reactions
 that are typically thermochemical

https://www.energy.gov/eere/iedo/2018-manufacturing-static-carbon-sankey-diagrams

PROCESS HEATING IS THE LARGEST SINGLE SOURCE OF ENERGY LOSS IN MANUFACTURING

- ~1/3rd of process heating energy is lost
- Energy efficiency improvements are important, but alone are insufficient
- Transformational approaches are needed to reduce emissions and improve productivity

A CROSS-SECTORAL APPROACH IS NEEDED

Thermal processes and systems are <u>essential</u> and <u>pervasive</u> in industry, but every major industrial subsector uses heat in <u>different ways</u>...

Develop cost competitive industrial heat decarbonization technologies with at least 85% lower greenhouse gas emissions by 2035

www.energy.gov/eere/industrial-heat-shot

INDUSTRIAL HEAT SHOT: THREE PATHWAYS TO DECARBONIZE INDUSTRIAL HEAT

Goal: Reduce the amount of heat and/or emissions from heat to make cleaner products

Generate Heat from Clean Electricity

Reduce Emissions: electrify equipment & use clean electricity, improve energy efficiency

Examples:

heat pumps, microwave heating, resistive heating, etc.

Integrate Clean Heat from Alternative Sources

Reduce Emissions:

switch to low-emissions heat sources and increase thermal storage

Examples:

solar thermal, nuclear, geothermal, hydrogen, some sustainable fuels, etc.

Innovative Low- or No-Heat Process Technologies

Reduce Emissions:

new chemistry and emerging approaches to reduce heat demand

Examples:

advanced separations, electrolysis, ultraviolet curing, biobased manufacturing, etc.

Enabling technologies and systems: e.g. energy storage, materials, modeling, data analytics, etc.

INDUSTRIAL HEAT SHOT: KEY CHARACTERISTICS

U.S. manufacturing is diverse, with a heterogenous array of processes and operations that use heat in multiple ways.

We need a portfolio of solutions that:

THIS IS AN OPPORTUNITY TO ADDRESS MORE THAN GREENHOUSE GASES

GHG reductions are necessary but insufficient.

We must also address the disproportionate impacts experienced by historically disadvantaged communities.

- Communities of color and low-income communities are more likely to be located near polluting industrial facilities
- Natural gas, coal, and fuel oil combustion for process heat produces criteria air pollutants like NO_x, CO, and particulate matter (PM) that impact health
- Fugitive methane emissions drive global warming and ozone formation.
- Sustainable manufacturing processes must address all human health and environmental impact categories.

OTHER IMPACTS AND CO-BENEFITS

Environmental Justice

• Improve health of local communities

Economic Competitiveness

- U.S. leadership in low-carbon products
- Sustain and create new jobs

Energy and Material Efficiency Improvements

Cost and Value

Energy Security

• Reduce exposure to volatile energy markets

LEVERAGING DOE RESOURCES

Optimize the source, type, and amount of heat used to minimize emissions and enable production of cleaner products by...

Challenges & Opportunities RDD&D Advance Key Technologies Electrotechnologies & alternative heat systems Develop diverse technology Innovative low- and no-heat processes & advanced portfolio to address industry's non-thermal separations (e.g., membranes) heterogeneous heat demands Advanced equipment and process control technologies Address cost competitiveness and quantify non-energy/non-DOE tools and resources for technoeconomic analysis emissions benefits and life cycle assessment Scale-up towards Technical assistance, workforce development, and commercialization advanced demonstration offices Meet or exceed operational Multi-scale modeling demands

ALL-HANDS-ON-DECK EFFORT

					WELCOME TO FOSSIL ENERGY AND CARBON MANAGEMENT		
Office of Science • Foundational R&D Capabilities at the User Facilities • High Performance Computing for Manufacturing	Industrial Efficiency and Decarbonization Office • RD&D in manufacturing processes, technologies, products, facilities, and supply chains	Nuclear Energy • RD&D to expand nuclear energy to industrial, transportation, and energy storage applications	Bioenergy Technologies Office • RD&D development of processes using alternative feedstocks and low/no heat manufacturing options	Hydrogen and Fuel Cell Technologies Office • RD&D of clean hydrogen technologies for low-carbon feedstocks and fuels	Fossil Energy and Carbon Management • RD&D to convert captured carbon into products without the need for heat or using substantially less heat	Solar Energy Technologies Office • RD&D in concentrated solar thermal and thermal storage technologies	Office of Clean Energy Demonstrations • Industrial Decarbonization Demonstration projects

DOE National Laboratories RD&D

INDUSTRIAL HEAT SHOT SUMMARY

DOE INDUSTRIAL HEAT RD&D INVESTMENT EXAMPLES

OCED Industrial Decarbonization Program (IDP) – Selections include "Process Heat":

- Steam-Generating Heat Pumps for Cross-Sector Deep Decarbonization | Skyven Technologies (Up to \$145 million - TBD)
- Vikrell Electric Boiler & Microgrid System | Kohler (Up to \$51.2 million Casa Grande, Arizona)

Regional Clean Hydrogen Hubs

Office of Clean Energy Demonstration

\$7B in federal funding to launch seven H_2 Hubs to accelerate commercial scale deployment of low-cost, clean hydrogen EPIXE ELECTRIFIED PROCESSES FOR

INDUSTRY WITHOUT CARBON

Industrial Efficiency and Decarbonization Office

DOE's 7th Clean Energy Manufacturing Innovation Institute. \$70M in federal funding over the next 5 years to fund RD&D projects to replace fossil fuel-based heating with electric heating

Generation 3 Concentrating Solar Power (Gen3CSP)

Solar Energy Technologies Office

\$25M in federal funding for demonstration of integrated hightemperature particle system for CSP

THANK YOU!

https://www.energy.gov/industrial-technologies/industrial-technologies

www.energy.gov/eere/industrial-heat-shot

